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Abstract. The document reviews the main properties of the integers, in-

cluding the division algorithm, the Euclidean algorithm, and the Fundamental

Theorem of Arithmetic, as well as giving several examples of proof by induc-
tion. We then move into modular arithmetic.

Modular arithmetic involves computing remainders upon addition and mul-

tiplication, and has wide ranging applications.
This is a stripped down version of this documents; we will not use much of

number theory in this course, so the theory of modular integers is rephrased
without equivalence classes.

1. Integers

The set of integers, denoted by Z, consists of the natural numbers, their nega-
tives, and zero. That is,

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
The primary aspects of the integers which illuminate their structure as a set

include:

• Integers are closed under addition; if we add two integers, we get another
integer.
• Integers are closed under subtraction.
• Integers are closed under multiplication.
• Integers are not closed under division; if we divide one integer into another,

we get either a rational number (which we discuss in the next topic), or we
get two integers (as we discuss in the next section.
• Integers are totally ordered by the relation ≤; given two integers, either one

is less than the other, or they are equal.
• Integers are partially ordered by divisibility. It is this aspect of the integers

we wish to explore in this document. We define this now

Definition 1. Let m,n ∈ Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Definition 2. Let m,n ∈ Z be nonzero. We say that a positive integer d ∈ Z is a
greatest common divisor of m and n, and write d = gcd(m,n), if

(a) d | m and d | n;
(b) e | m and e | n implies e | d, for all e ∈ Z.
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2. The Division Algorithm

Proposition 1. (Division Algorithm)
Let m,n ∈ Z with m 6= 0. There exist unique integers q, r ∈ Z such that

n = qm + r and 0 ≤ r < |m|.

We offer two proofs of this, one using the well-ordering principle directly, and
the other phrased in terms of strong induction.

Proof by Well-Ordering. First assume that m and n are positive.
Let X = {z ∈ Z | z = n − km for some k ∈ Z}. The subset of X consisting of

nonnegative integers is a subset of N, and by the Well-Ordering Principle, contains
a smallest member, say r. That is, r = n− qm for some q ∈ Z, so n = qm + r. We
know 0 ≤ r. Also, r < m, for otherwise, r −m is positive, less than r, and in X.

For uniqueness, assume n = q1m+ r1 and n = q2m+ r2, where q1, r1, q2, r2 ∈ Z,
0 ≤ r1 < m, and 0 ≤ r2 < m. Then m(q1 − q2) = r1 − r2; also −m < r1 − r2 < m.
Since m | (r1 − r2), we must have r1 − r2 = 0. Thus r1 = r2, which forces q1 = q2.

The proposition remains true if one or both of the original numbers are negative
because, if n = mq + r with 0 ≤ r < m, then 0 ≤ m− r < m when r > 0, and

• (−n) = m(−q − 1) + (m− r) if r > 0 and (−n) = m(−q) if r = 0;
• (−n) = (−m)(q + 1) + (m− r) if r > 0 and (−n) = (−m)q if r = 0;
• n = (−m)(−q) + r.

�

Proof by Strong Induction. Assume that m and n are positive.
If m > n, set q = 0 and r = n. If m = n, set q = 1 and r = 0. Otherwise,

we have 0 < m < n. Proceed by strong induction on n. Here we assume that the
proposition is true for all natural number less that n, and show that this implies
that the proposition is true for n. Then, by the conclusion of the Strong Induction
Principle, the proposition will be true for all natural numbers n.

Note that n = m + (n−m) and n−m < n, so by induction, n−m = mq1 + r
for some q1, r ∈ Z with 0 ≤ r1 < m. Therefore n = m(q1 + 1) + r1; set q = q1 + 1
to see that n = mq + r, with r still in the range 0 ≤ r < m.

The proof for uniqueness and the cases where m and/or n are negative are the
same as above. �

Notice that the proof by induction reveals division as repeated subtraction. It
more closely mimics the algorithm we use to find q and r than does the proof via
the Well-Ordering Principle.
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3. The Euclidean Algorithm

Proposition 2. (Euclidean Algorithm)
Let m,n ∈ Z be nonzero. Then there exists a unique d ∈ Z such that d = gcd(m,n),
and there exist integers x, y ∈ Z such that

d = xm + yn.

Proof. Let X = {z ∈ Z | z = xm + yn for some x, y ∈ Z}. Then the subset of X
consisting of positive integers contains a smallest member, say d, where d = xm+yn
for some x, y ∈ Z.

Now m = qd + r for some q, r ∈ Z with 0 ≤ r < d. Then m = q(xm + yn) + r,
so r = (1− qxm)m + (qy)n ∈ X. Since r < d and d is the smallest positive integer
in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k, l ∈ Z. Then d =
xke + yle = (xk + yl)e. Therefore e | d. This shows that d = gcd(m,n).

For uniqueness of a greatest common divisor, suppose that e also satisfies the
conditions of a gcd. Then d | e and e | d. Thus d = ie and e = jd for some i, j ∈ Z.
Then d = ijd, so ij = 1. Since i and j are integers, then i = ±1. Since d and e are
both positive, we must have i = 1. Thus d = e. �

This shows that the d = gcd(m,n) exists and the formula xm + yn = d holds,
but does not give a method of finding x, y, and d. The method we develop is based
on the following propositions.

Proposition 3. Let m,n ∈ N and suppose that m | n. Then gcd(m,n) = m.

Proof. Clearly m | m, and we are given m | n. Now suppose that e | m and e | n.
Then e | m. Thus m = gcd(m,n). �

Proposition 4. Let m,n ∈ Z be nonzero, and let q, r ∈ Z such that n = qm + r.
Then gcd(n,m) = gcd(m, r).

Proof. Let d = gcd(n,m). We wish to show that d = gcd(m, r), which requires
showing that d satisfies the two properties of being the greatest common divisor of
m and r.

Since d = gcd(n,m), we know that d | n and d | m. Thus n = ad and m = bd
for some a, b ∈ Z. Now r = n −mq = ad − bdq = d(a − bq), so d | r. Thus d is a
common divisor of m and r.

Let e ∈ Z such that e | m and e | r. Then m = ge and r = he for some g, h ∈ Z,
so n = geq +he = e(gq +h); thus e | n, so e is a common divisor of n and m. Since
d = gcd(n,m), e | d. Therefore, d = gcd(m, r). �
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Definition 3. Let m,n ∈ Z. We say that m and n are relatively prime if

gcd(m,n) = 1.

Proposition 5. Let m,n ∈ Z. Then

gcd(m,n) = 1 ⇔ xm + yn = 1 for some x, y ∈ Z.

Proof. We have already seen that if gcd(m,n) = 1, then xm + yn = 1 for some
x, y ∈ Z. Thus we prove the reverse direction; suppose that xm + yn = 1 for some
x, y ∈ Z. We wish to show that gcd(m,n) = 1.

Clearly 1 | m and 1 | n. Suppose that e | m and e | n. Then m = ke and n = le
for some k, l ∈ e. So

1 = xke + yle = (xk + yl)e.

Thus e | 1, whence gcd(m,n) = 1. �

Proposition 6. Let m,n, d ∈ Z such that gcd(m,n) = d. Then gcd(m
d ,

n
d ) = 1.

Proof. Since xm + yn = d for some x, y ∈ Z, we have xm
d + y n

d = 1. From
Proposition 5, we conclude that gcd(m

d ,
n
d ) = 1. �

Proposition 7. Let a, b, c ∈ Z. If a | bc and gcd(a, b) = 1, then a | c.

Proof. Since a | bc, there exists z ∈ Z such that az = bc. Since gcd(a, b) = 1, there
exist x, y ∈ Z such that xa + yb = 1. Multiplying both sides by c gives

xac + ybc = c⇒ xac + yaz = c⇒ a(xc + yz) = c.

Thus a | c. �

Proposition 8. Let a, b, c ∈ Z. If a | c, b | c, and gcd(a, b) = 1, then ab | c.

Proof. There exist e, f, x, y ∈ Z such that ae = c, bf = c, and xa + yb = 1.
Multiplying the last equation by c gives xac + ybc = c. Substitution gives xabf +
ybae = c, so ab(xf + ye) = c. Thus ab | c. �

Definition 4. Let m,n ∈ Z. We say that a positive integer l ∈ Z is a least common
multiple of m and n, and write l = lcm(m,n), if

(a) m | l and n | l;
(b) m | k and n | k implies l | k, for all k ∈ Z.

Proposition 9. Let m,n ∈ Z be nonzero. Then there exists a unique l ∈ Z such
that l = lcm(m,n), and if d = gcd(m,n), then

l =
mn

d
.

Proof. Let l = mn
d ; we wish to show that l is a least common multiple for m and

n. Since d = gcd(m,n), m
d and n

d are integers, and l = mn
d = nm

d . Thus m | l and
n | l.

Now suppose that k is an integer such that m | k and n | k; we wish to show that
l | k. We have k = ae and k = bf for some e, f ∈ Z. Thus ae = bf , and dividing
by d gives ea

d = f b
d . Thus a

d | f
b
d , and since gcd(a

d ,
b
d ) = 1, we have a

d | f . Thus

f = g a
d for some g ∈ Z, so k = bf = g ab

d = gl. Thus l | k, so l is a least common
multiple of m and n.

For uniqueness, note that any two least common multiples must divide each
other; but they are both positive, so they must be equal. �
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4. Fundamental Theorem of Arithmetic

Definition 5. An integer p ≥ 2, is called prime if

a | p⇒ a = 1 or a = p, where a ∈ N.
Proposition 10. Let a, p ∈ Z, with p prime. Then

gcd(a, p) =

{
p if p | a;

1 otherwise.

Proof. Let d = gcd(a, p). Then d | p, so d = 1 or d = p. We have p | p, so if p | a,
we have p | d. In this case, d = p. If p does not divide a, then d 6= p, so we must
have d = 1. �

Proposition 11. (Euclid’s Argument)
Let p ∈ Z, p ≥ 2. Then p is prime if and only if

p | ab⇒ p | a or p | b, where a, b ∈ N.
Proof.
(⇒) Given that a | p ⇒ a = 1 or a = p, suppose that p | ab. Then there exists
k ∈ N such that kp = ab. Suppose that p does not divide a; then gcd(a, p) = 1.
Thus there exist x, y ∈ Z such that xa+yp = 1. Multiply by b to get xab+ypb = b.
Substitute kp for ab to get (xk + yb)p = b. Thus p | b.
(⇐) Given that p | ab⇒ p | a or p | b, suppose that a | p. Then there exists k ∈ N
such that ak = p. So p | ak, so p | a or p | k. If p | a, then pl = a for some l ∈ N,
in which case alk = a and lk = 1, which implies that k = 1 so a = p. If p | k, then
k = pm for some m ∈ N, and apm = p, so am = 1 which implies that a = 1. �

Proposition 12. Let n ∈ Z with n ≥ 2.
There exists a prime p ∈ Z such that p | n.
Proof. Proceed by strong induction on n. If n is prime, it divides itself; otherwise,
n is not prime, and n = ab for some a, b ∈ Z with a < n and b < n. By induction,
a is divisible by a prime, so n = ab is divisible by that prime. �

Proposition 13. (Fundamental Theorem of Arithmetic)
Let n ∈ Z, n ≥ 2. Then there exist unique prime numbers p1, . . . , pr, unique up to
order, such that

n =

r∏
i=1

pi.

Proof. We know that n is divisible by some prime, say n = pm for some p,m ∈ Z
with p prime. Since m is smaller than n, we conclude by induction that m factors
into a product of primes; thus n = pm factors into a product of primes. To see that
this factorization is unique, suppose that there exist prime p1, . . . , pr and q1, . . . , qs
such that

n = p1p2 · · · pr = q1q2 · · · qs.
By repeatedly applying Euclid’s Argument, we see that p1 | qi for some i, and by
renumbering if necessary, we may assume that p1 | q1. Since q1 is prime, p1 = 1 or
p1 = q1; but p1 is also prime, so it is greater than 1; thus p1 = q1. Canceling these,
we see that p2 · · · pr = q2 · · · qs, and we may repeat this process obtaining p2 = q2,
p3 = q3, and so forth. We also see that r = s, for otherwise, we would obtain an
equation in which a product of primes equals one. �
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5. Integers Modulo n

Definition 6. Let n ∈ Z with n ≥ 2. Let a, b ∈ Z. We say that a is congruent to
b modulo n, and write a ≡ b (mod n), if the difference a− b is a multiple of n:

a ≡ b (mod n) ⇔ n | (a− b).

Definition 7. Let n ∈ Z with n ≥ 2, and let a ∈ Z. The congruence class of a
modulo n, denoted a, is the set of all integers which are congruent to a modulo n:

a = {b ∈ Z | a ≡ b (mod n)}.

Proposition 14. Let n ∈ N and let a1, a2 ∈ Z. By the Division Algorithm, there
exist unique integers q1, r1, q2, r2 ∈ Z such that

• a1 = nq1 + r1, where 0 ≤ r1 < n;
• a2 = nq2 + r2, where 0 ≤ r2 < n.

Then a1 ≡ a2 (mod n) if and only if r1 = r2.

Proof.
(⇒) Suppose that a1 ≡ a2. Then n | (a1 − a2). This means that nk = a1 − a2

for some k ∈ Z. But a1−a2 = n(q1− q2) + (r1− r2). Then n(k+ q1− q2) = r1− r2,
so n | r1 − r2.

Multiplying the inequality 0 ≤ r2 < n by −1 gives −n < −r2 ≤ 0. Adding this
inequality to the inequality 0 ≤ r1 < n gives −n < r1 − r2 < n. But r1 − r2 is an
integer multiple of n; the only possibility, then, is that r1 − r2 = 0. Thus r1 = r2.

(⇐) Suppose that r1 = r2. Then a1 − a2 = nq1 − nq2 = n(q1 − q2). Thus
n | (a1 − a2), so a1 ≡ a2. �

An element r ∈ Z is called a preferred representative for a if r ∈ a and 0 ≤ r < n.
This is the remainder when any element in a is divided by n.

The division algorithm for the integers tells us that there is a preferred represen-
tative for each congruence class. Also, Proposition 14 guarantees that as r ranges
over the integers from 0 to n− 1, the congruence classes r are distinct. Thus there
are exactly n equivalence classes, modulo n.

Definition 8. The ring of integers modulo n is

Zn = {a | a ∈ Z}.

That is, Zn is the set of equivalence classes modulo n, and |Zn| = n. For example,

Z7 = {0, 1, 2, 3, 4, 5, 6}.
Henceforth, whenever we refer to Zn, assume that n ∈ Z with n ≥ 2.

Define the binary operations of addition and multiplication on Zn by

a + b = a + b and a · b = ab.

Definition 9. Let a, n ∈ Z, n ≥ 2, and a ∈ Z. We say that a ∈ Zn is invertible if
there exists b ∈ Z such that ab ≡ 1 (mod n).

Proposition 15. Let a ∈ Zn. Then a is invertible if and only if gcd(a, n) = 1.

Proof. Apply the Euclidean Algorithm to find the inverse of a. �
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